Cadmus

Concepts for a New Generation of Global Modelling Tools: Expanding our Capacity for Perception

Abstract
It is now twenty years since the issues associated with the global ‘problematique’ were widely publicized in Limits to Growth, the pioneering study commissioned by the Club of Rome. In the meantime much has been written, but real action that might lead to a more harmonious and sustainable future has not been forthcoming. Indeed there is evidence that these issues are becoming even more threatening to humankind. There is an apparent inability of human societies to address the global problems of sustainability identified by the Club of Rome twenty years ago.

This paper advocates the use of global modelling tools as a means of expanding our collective capacity for perception. What is proposed is not the development of another model but the establishment of a process consisting of the design and use of modelling tools to further the explication and communication of understanding, and thereby facilitating both individual and societal action. The proposed approach builds upon the strength of World Dynamics Model as a communications device and seeks to take advantage of scientific and technological advances of the past decades.

1. The Problem
It is now twenty years since the issues associated with the global ‘problematique’ were widely publicized in Limits to Growth, the pioneering study commissioned by the Club of Rome. Since then, much has been written on the subject, including the United Nations report of World Commission on Environment and Development, Our Common Future, [WCED, 1987], the publications of the World Watch Institute, and more recently a Report by the Council of the Club of Rome, The First Global Revolution [King, 1992] [†]. As well, the authors of Limits to Growth updated and reiterated the original findings in Beyond the Limits [Meadows, 1992][‡]. Innumerable conferences on ‘sustainable development’ have been held, including, most recently, the UNCED conference in Rio de Janeiro.

But real action that might lead to a more harmonious and sustainable future has not been forthcoming.[§] Indeed there is evidence that these issues are becoming even more difficult to deal with and more threatening to humankind. There is an apparent inability of human societies to address the global problems of sustainability identified by the Club of Rome twenty years ago.

2. Why is this the case?
In the answer to this question lies the key to the current impasse. We approach this question from the perspective of control theory: Effective action arises from a decision process that has three necessary ingredients: a well-defined objective, an understanding of how the system in question works, including how it interacts with its environment, and continuing observations of the state of the system that provide feedback to the system manager.[**]

Figure 1: Effective action arising from a decision process

hoffman-fig1

The understanding, which is in fact a model of the system—a systems model, plays a pivotal role in the decision process. It serves to identify the set of state variables or indicators to be observed or monitored and relates the observed state variables to the objective, in this way providing feedback to the decision making process. The systems model also supports the choice of objectives by facilitating the definition and exploration of alternatives.

In this context, it is worth recalling the cybernetic theorem, the Law of Requisite Variety, which states that the regulation that the regulator can achieve is only as good as the model of the reality that it contains [Ashby, 1956].

It comes down to this: we cannot regulate our interaction with any aspect of reality that our model of reality does not include – whether as to its theoretical range or as to its obser-vational facilities and resolution – because we cannot by definition be conscious of it[Beer, 1980].

The systems models associated with the decision processes which give rise to individual actions are seldom explicit, nor is the individual even conscious of their existence [Maturana and Varella, 1980, Senge, 1992, Erlich and Ornstein, 1989].

In the application of this framework to the issues of the global problematique, a number of problems become apparent.

  1. If we accept the concept of sustainability as the ‘objective’, three complicating features arise. First, sustainability is a comprehensive concept; it is a property that applies to a system as whole. Just as ‘temperature’ and ‘pressure’ are properties that apply to a gas, not to the individual molecules that constitute the gas, sustainability is a property of the global ecosystem, not its constituent processes. Second, sustainability has a clear reference to the future as it is concerned with the persistence of harmonious relationships between human activities and the environment indefinitely into the future. Third, the sustainability of human populations is an objective that is potentially in conflict with the objectives of individuals.
  2. In the case of global problems, the ‘manager’ or controller is society itself: individuals and the institutions of society that have been delegated responsibility for managing various aspects of human activities. Since this ‘manager’ system is obviously not monolithic, effective action will depend upon managers having a common understanding or shared systems model.
  3. The understanding of the system is (i) incomplete to the extent that specific processes are not understood and (ii) fragmented in that partial systems models exist in narrowly defined disciplines. These various systems models are uncoordinated with the consequence that understanding of the system as a whole is impeded.
  4. The implicit perceptual apparatus that guides individual actions is dysfunctional to the extent that is far too limited in time and space. Peter Senge argues that if we’re really trying to create a whole new domain of behavior, actions and possibilities, … , then we have to become conscious about it. [Senge, 1992]
  5. In the absence of widely shared understanding or common systems model, the feedback loop from observations of the system to the system manager is weak. The property of sustainability cannot be directly observed or monitored because it is a property that applies to the future of the system and the future of the system is not fully determined or indicated by its present state.

From the discussion above, it is clear that a conscious and explicit systems model plays a crucial role in developing and communicating a common understanding needed for effective interpretation of the observations and for both individual and collective action.

It is equally clear that the written word has failed to develop this common understanding. Much of the writing on the subject of the ‘problematique’ takes the form of expert analysis followed by prescription, a form that combines elements of verbal description and persuasion. Verbal description, relying on the linear subject/predicate cause/effect constructs of language, has not proven to be effective in describing a causal and complex systems; persuasion, relying on rhetorical technique and selective arguments, may trigger action, but seldom conveys understanding. Prescriptions made by ‘experts’ are increasingly suspected by a vast majority of people who believe they are not capable of understanding but have learned through experience not to trust such pronouncements. Argument, according to Northrop Frye, relies on the arrangement of data. Arrangement means selecting for emphasis, and selecting for emphasis can never be definitively right or wrong [Frye, 1990].

John Ralston Saul neatly states this point in his book, Voltaire’s Bastards, when he observes, with respect to the Western world, that:

Our unquenchable thirst for answers (for ‘answers’ read ‘prescriptions’) has become one of the obvious characteristics of the West in the second half of the twentieth century. But what are answers when there is neither memory nor general understanding to give them meaning? This running together of the right answer with the search for truth (for ‘truth’ read ‘understanding’) is perhaps the most poignant sign of our confusion. [Saul, 1992]

The scientific method, relying as it does on controlled and repeatable experiments, does offer a powerful means of communicating understanding. But the scientific method is reductionist and by itself is inappropriate for holistic analysis of evolutionary systems (of which humanity is an integral part) which are structures fixed in space and time. These systems are subject to constant and irreversible change.

We believe that the success of the World Dynamics project may be attributed to its ability to communicate an understanding of a complex and dynamic system through the description of the structure of a mathematical systems model [Forrester, 1971]. This experience suggests that a computer based simulation model that can be used to explore the future consequences of societal actions may be an effective means to communicate the understanding needed for effective societal action.

Robert Hoffman: President, whatIf? Technologies;Full Member, Club of Rome
* This paper was prepared as an activity of the Global Modelling Project of the Canadian Association for the Club of Rome. Project Team members contributing to this paper are Paul Baack, Ian Nalder, Bob Fletcher, Stan Isbrandt, Ed Napke, Allan Jones, Art Hunter, and Max McConnell.
[†] See Randers (2012) for an account of the challenges confronting humankind to 2052.
[‡] The thirty year update was published in 2004. See Meadows (2004).
[§] Graham Turner has shown that the business-as-scenario presented in Limits to Growth is a good predictor of the historical data observed since the scenario was published in 1972. See Turner (2008) and Turner (2012)
[**] See Findeisen (1980)


Pages: 1 2 3 4